Search results

Search for "oxa-Michael reaction" in Full Text gives 7 result(s) in Beilstein Journal of Organic Chemistry.

Using the phospha-Michael reaction for making phosphonium phenolate zwitterions

  • Matthias R. Steiner,
  • Max Schmallegger,
  • Larissa Donner,
  • Johann A. Hlina,
  • Christoph Marschner,
  • Judith Baumgartner and
  • Christian Slugovc

Beilstein J. Org. Chem. 2024, 20, 41–51, doi:10.3762/bjoc.20.6

Graphical Abstract
  • -carbonyl-based Michael acceptors. Results and Discussion Synthesis During our endeavors to identify potent Lewis-base catalysts for the oxa-Michael reaction [13][14], the triarylphosphine 1 was tested in a model reaction (2 equiv allyl alcohol, 1 equiv acrylonitrile, 0.05 equiv 1). However, no conversion
  • 3.09 ppm, respectively, and two novel signals for tertiary butyl groups. Accordingly, we reasoned that the phosphine has reacted presumably with acrylonitrile forming a stable species not suited to catalyze the oxa-Michael reaction. In order to identify this compound, we reacted 1 with acrylonitrile or
PDF
Album
Supp Info
Full Research Paper
Published 10 Jan 2024

Oxa-Michael-initiated cascade reactions of levoglucosenone

  • Julian Klepp,
  • Thomas Bousfield,
  • Hugh Cummins,
  • Sarah V. A.-M. Legendre,
  • Jason E. Camp and
  • Ben W. Greatrex

Beilstein J. Org. Chem. 2022, 18, 1457–1462, doi:10.3762/bjoc.18.151

Graphical Abstract
  • chemistry; levoglucosenone; oxa-Michael reaction; Introduction (−)-Levoglucosenone (1) is formed from the acid-catalyzed pyrolysis of cellulose along with minor amounts of furfural and 5-methylfurfural [1][2][3]. It has emerged as a promising starting material for enantioselective synthesis from materials
PDF
Album
Supp Info
Full Research Paper
Published 13 Oct 2022

Sesquiterpenes from the soil-derived fungus Trichoderma citrinoviride PSU-SPSF346

  • Wiriya Yaosanit,
  • Vatcharin Rukachaisirikul,
  • Souwalak Phongpaichit,
  • Sita Preedanon and
  • Jariya Sakayaroj

Beilstein J. Org. Chem. 2022, 18, 479–485, doi:10.3762/bjoc.18.50

Graphical Abstract
  • intensities of Hb-3, H-5, and Hab-15, indicating that the carboxyl moiety was α-orientated. Biosynthetically, compound 2 might be derived from compound 4 or compound 5 by oxa-Michael reaction of 7-OH to the α,β-unsaturated carboxylic acid moiety to form a tetrahydrofuran unit followed by ring opening of the
  • lactone moiety and demethylation, respectively (Figure 4). Subsequent dehydration would afford compound 2 with an α,β-unsaturated carboxylic acid moiety. Alternatively, the ring opening of compound 4 and demethylation of compound 5 would occur prior to the oxa-Michael reaction. Accordingly, the absolute
PDF
Album
Supp Info
Full Research Paper
Published 29 Apr 2022

Electron-rich triarylphosphines as nucleophilic catalysts for oxa-Michael reactions

  • Susanne M. Fischer,
  • Simon Renner,
  • A. Daniel Boese and
  • Christian Slugovc

Beilstein J. Org. Chem. 2021, 17, 1689–1697, doi:10.3762/bjoc.17.117

Graphical Abstract
  • triarylphosphines TPP, MMTPP and TMTPP as catalysts for the oxa-Michael reaction three varyingly strong Michael acceptors, namely acrylonitrile (1), acrylamide (2) and divinyl sulfone (3) were reacted with four different alcohols of similar molecular mass but different acidity (Figure 1). The stoichiometry of
  • catalyst TPP is unable to promote the oxa-Michael reaction of the good Michael acceptor 1 (electrophilicity parameter E of −19.05 [19]) with the least acidic alcohol 2-propanol (a) as virtually no conversion was observed after 24 h. Using MMTPP leads to a minor improvement and a 3% conversion towards 1a
  • poly4 exhibiting even lower Mn values (820 and 890 g/mol, Ð = 1.7 and 1.8) than those obtained in the room temperature reaction. Considering the distinctly higher double-bond conversions at 80 °C, these findings point to another double-bond consuming reaction beside the oxa-Michael reaction. The
PDF
Album
Supp Info
Full Research Paper
Published 21 Jul 2021

Recent advances in N-heterocyclic carbene (NHC)-catalysed benzoin reactions

  • Rajeev S. Menon,
  • Akkattu T. Biju and
  • Vijay Nair

Beilstein J. Org. Chem. 2016, 12, 444–461, doi:10.3762/bjoc.12.47

Graphical Abstract
  • intermolecular aza-benzoin reaction is followed by an intramolecular oxa-Michael reaction to form the observed product (Scheme 28). Enders reported a cascade reaction which is initiated by an NHC-catalysed aza-benzoin condensation between various aldehydes and nitrosobenzenes to generate the hydroxamic acids 47
PDF
Album
Correction
Review
Published 09 Mar 2016

Catalytic asymmetric formal synthesis of beraprost

  • Yusuke Kobayashi,
  • Ryuta Kuramoto and
  • Yoshiji Takemoto

Beilstein J. Org. Chem. 2015, 11, 2654–2660, doi:10.3762/bjoc.11.285

Graphical Abstract
  • enantioselective intramolecular oxa-Michael reaction of an α,β-unsaturated amide mediated by a newly developed benzothiadiazine catalyst. The Weinreb amide moiety and bromo substituent of the Michael adduct were utilized for the C–C bond formations to construct the scaffold. All four contiguous stereocenters of
  • few asymmetric syntheses relying on the optical resolution of racemic intermediates [16][17][18][23]. Herein we report the first catalytic asymmetric synthesis of the key intermediate 2 through organocatalyzed-enantioselective intramolecular oxa-Michael reaction [24][25][26]. Results and Discussion
  • condensation followed by diazo-transfer reaction. The chiral dihydrobenzofuran scaffold (5 or 6) could be synthesized by asymmetric intramolecular oxa-Michael reaction (AIOM) of α,β-unsaturated amides 7 or 8. Such reactions are generally considered to be challenging due to low nucleophilicity of the oxygen
PDF
Album
Supp Info
Full Research Paper
Published 18 Dec 2015

Organocatalytic tandem Michael addition reactions: A powerful access to the enantioselective synthesis of functionalized chromenes, thiochromenes and 1,2-dihydroquinolines

  • Chittaranjan Bhanja,
  • Satyaban Jena,
  • Sabita Nayak and
  • Seetaram Mohapatra

Beilstein J. Org. Chem. 2012, 8, 1668–1694, doi:10.3762/bjoc.8.191

Graphical Abstract
  • high yield (up to 90%) and enantioselectivity (up to 99%), whereas compound 2 having electron-withdrawing groups provided poor results. Very recently, Xu et al. [46] reported an improved protocol for the domino-oxa-Michael reaction of salicylaldehydes 1 with α,β-unsaturated aldehydes 2 employing
PDF
Album
Review
Published 04 Oct 2012
Other Beilstein-Institut Open Science Activities